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COMET is a next generation, high intensity experiment looking
for new physics.
New Physics: Charged Lepton Flavor Violation
New Designs: The Coherent Muon to Electron Transition
Y (COMET) experiment
Hough
T New Techniques: Gradient Boosted Decision Trees

GBDT

(GBDT) and Hough Transforms in Track Finding
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Lepton flavor is conserved in the Standard Model.

Muon Decay: i~ — v, +e + e
Muon Capture: 1= + N — v, + N’

Do the charged leptons, (7, i1, €), violate this
conservation law of the Standard Model?
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Charged Lepton Flavor Conservation has been tested for
decades. Upper limits for muonic search channels:

m Br(ut — et +ef+e) < 1.0x10712 (SINDRUM 1988)
m Br(ut — et +7) <4.2x 10713 (MEG 2016)
m B(i~ +Au— e +Au) <7 x 10713 (SINDRUM Il 2006)

COMET focuses on muon to electron conversion. Without
CLFV, this process can only come indirectly with processes
involving neutrinos:

B(ym + N —e +N)~102
In 2018, COMET Phase | aims to achieve the sensitivity of:

B~ +Al—e +A)<72x107"
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Classification Problem R ——

“Is this wire a signal hit from a signal track”. Algorithm
developed with Dr. Alex Rogozhnikov when he was at Yandex.
Hit wires have three main features
m Radial distance from centre.
m Energy deposited by charged particle.
m Timing of energy deposition.
Define categories of features:
“Local” Features: Features on the wire itself
“Neighbour” Features: Features of adjacent wires

“Shape” Features: Check if the wire forms a circle with
other hit wires

16
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Previous Classifier: Cutting on Charge .
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Cut removes 80% of background while keeping 99% of signal.

Normalised Hit Count

Charge Depostion

204

=
Ln
.
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05 A

oo -

2 3
loglQiCharge Deposition [2])
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Signal hits are often grouped in local clusters, meaning
neighbouring wire features are extremely important.

Neighbour-Level Features:

00O
00
00O

19

Radial distance from centre,
same for wire and LR neighbours
(1 feature)

Energy deposited on wire, left
neighbour, and right neighbour
(3 features).

Timing of hit on wire, left

neighbour, and right neighbour
(3 features).
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Neighbour-Level GBDT Output Distribution .
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Output of GBDT trained on local and neighbour features.

Normalised Hit Count

20 4

Neighbour-Level GBDT Qutput Distribution
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Neighbour-Level GBDT Qutput
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m Open circles are

original hit
locations
Neghour Lo m Signal Hits and
Hough Background
Transform .
Track-Level Hits are scaled
GBDT

to the output of
the neighbour
level GBDT.
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Figure 1: Points in (x,y) space,  Figure 2: A mapping from the

blue, thought to be on a circle, points in (x, y) space, blue, to
red, whose centre lies at the possible circle centers in (a, b)
origin, orange. space, green.
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Hough Implementation

m Hits with
corresponding
hough
contributions

m Track centers
scaled by
contributions
from hit points.

Track Centre Layout
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Executing the Hough Transform

Weight wire j's contribution by its GBDT output:

W; = yGrad. <f1(j), e f,\(f)) for N features

Yandex
Data Factory

Imperial College

Apply hough transform between wire j and track center i:

GBDT Score
=~

T; W, = G

~—~
Hough

~—

Track centre

Reweight the results to highlight maxima:
Ci — Cl (a) = exp(aC)

Invert the transform:

Reweighted Track centers

1
(Ty)" G =W
~——

Inv. Hough
25
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Forward Hough Transform on Neighbour Leve| e

Data Factory

GBDT Output imperial Colge

m Signal hits scaled
by neighbour
level GBDT
output W;.

m Background hits
also scaled by
W;.

m Hough transform
scaled by W; of
corresponding
hit.

m Track centers

scaled by C; from
G =T;W,.

180
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Inverse Reweighted Hough Transform Output

m Signal hits scaled

Yandex
»  Data Factory
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by reweighted
inverse Hough
output Wj’.
Background hits
scaled by W/.
Track centers
scaled by C/.

Inverse Hough
transform scaled
by C/ of
corresponding
centre.
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Inverse Hough Output Feature
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New feature rewards hits that form a track with signal-like hits.

Normalised Hit Count

14 1

Inverse Hough Transform Output Distribution

0o

05

B Signal

Background

10 1
Inverse Hough Cutput
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GBDT trained on local, neighbour, and new track features.

Normalised Hit Count
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Track-Level Output Distribution

B Signal
Background
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Track-Level GBDT Qutput
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m Signal hits and
Background hits
scaled by output
of track-level

GBDT. [
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Negwourtee m Note: No cuts 18%
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the full response
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m Cut placed on
GBDT output
that preserves
99% of signal
hits.

Neighbour-Level
GBDT

Transform

Track-Level | S'gnal hItS and

GBDT .
Background hits
are filled if they
pass the cut.
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Pecsonsand Comparison of cut-based classifier vs GBDT methods.
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ROC Curves [2]

Zoomed ROC curves, note the axes.

Background Hit Rejection Efficiency

90%
100%

Yandex
»  Data Factory

Imperial College
London
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The track finding algorithm developed with Dr. Alex
Rogozhnikov at Yandex is successful.

m This is the first time BDTs have been used in track finding
(so far as | know).

m Further development still needed to define tracks as
collections of filtered hit points.

Further work: Track Trigger
m Algorithm has been developed with Yandex.
m FPGA firmware developed on similar principles in Japan.

m Implementation is underway

https://github.com /ewengillies /track-finding-yandex
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Possible Channels for Signal

w

q q
(b) Z-prime

Yandex
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\R /z/
n
L n
"
"
/q/\B\
(c) Leptoquarks

(d) Heavy Neutrinos

(e) Exotic Higgs

38

(f) Supersymmetry
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Possible Channels for New Physics

Four-Fermi contact:
m Increased sensitivity for
[-€ conversion

m Model-independent search

Photonic:

m Still accessible in p-e
conversion search.

m Less sensitive than
dedicated p-e gamma
experiments (like MEG).

39

Yandex
Data Factory

Imperial College




©
OME"I;

Decisions and
COMET

Ewen Gillies

Neighbour-Level
GBDT

Hough
Transform

Track-Level
GBDT

Backup

Complementary Searches

B AT e Al
<7x1071
COMET Phase- T

104;
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SINDRUM-I11

B(p~Au — e~ Au)
<7x1071
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BR(pt — et7)
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Excluded

Four-Fermi

Photonic
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m Relative sensitivity to Four
Fermi and Photonic
interactions is model
dependent.

m Highly complimentary to
MEG search

L= — (Bro" e  Fu)

Tr A2 (" er) (Guyuqr)
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m Relative sensitivity to Four

Fermi and Photonic

interactions is model

dependent.

m Highly complimentary to

MEG search
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Both background and signal processes will produce 105 MeV

electrons.

Counts per 0.1 MeV/c

o o o o
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o
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The COMET Experiment: Phase Il

m Capture backwards
scattered pions from
proton beam.

m Bent solenoids select
low momentum muons.

m Muons stopped in
target, conversion
occurs here!

m Bent solenoids select
high momentum
electrons.

m Detector waits for
offset fiducial time
window.

Yandex
Data Factory
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London

Protons e ——
Pion Capture
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Production

Target 3m

Pion Decay and
Muon Transport Section

Stopping
Target

Electrons 2R
LLLLLLLL LT
Electron \,

Spectrometer
—

W=

Cosmic Ray Veto

»
b IT L

Detector
Section

44



Yandex
Data Factory

omer Phase Il Geometry

Imperial College

Decisions and
COMET

Ewen Gillies

Backup




©
OME"I;

Decisions and
COMET

Ewen Gillies

New Physics
& CLFV

COMET
Design
Principles

New Tracking
Techniques

Neighbour-Level
GBDT

Hough
Transform

Track-Level
GBDT

Backup

Yandex

COMET Phase | Design oapert Coleae

Protons

Jilim

LAARRARAN

AAAAAAARAA
R
HHEEEEEEE

|

Detector
Section

London

Section

ﬂ Pion Capture

Production

Target

Phase-l Detectors
CyDet

i StrECAL %
Conversion Beam o
measurement characterisation

46



omer Cylindrical Detector: Stereometry

Decisions and
COMET

Ewen Gillies

Neighbour-Level
GBDT

Hough
Transform

Track-Level
GBDT

Backup

Location in Z [cm]

Location in X [cm]

Figure 4: A projection of a wire
array with alternating stereo
angles from above.
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XY Projection of Wire Array At Z=0
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Figure 5: A projection at Z =0
of a wire array with alternating
stereo angles from along the
beamline.
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Decision Tree
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Sample is split by series of threshold cuts. At each stage, cut is
taken that improves the “purity” of classification at next node.

Figure 6: A decision tree, where the features are labelled as

{xi, xj,xk}. The first cut is on xi at value xi = c1. This process is
continued until some stopping criteria is reached. The leaf nodes are
labelled as background, B, or signal, S.

48



7
OMET
e

Decisions and
COMET

Ewen Gillies

Neighbour-Level
GBDT

Hough
Transform

Track-Level
GBDT

Backup

Yandex

Gradient Boosted Decision Tree s e
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Gradient boosting takes a weighted sum of decision trees. The
weights are determined to minimize a loss function that
describes misclassification rate. For a hit with a vector of
features f:

Decision Tree i:  hj(f)=+1or —1

Ntrees

GBDT: Yerad(f, b) Z bihi(

Loss Function: F(YGrad,Y) = 72 [V - Yarad + In (1 + e¥6=d)]

Minimising this function with respect to the weights b fully
determines the GBDT.
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This is the timing of the hit relative to the timing of the trigger
signal.

Normalised Hit Count
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Wires with no hits get a very negative time.

Normalised Hit Count

Relative timing of Left Hand Wire, No Hit = -1000
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Radial Distance Distribution

Normalised Hit Count

Radial Distance of Hit
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COMET °
be part of a track
that forms a helix in
3D space.

Ewen Gillies

Projecting the track
onto a slice of the
\eenan 1o Cylindrical detector
GBDT . .
Hough gives a circular

Transform

Track Leve shape.

GBC

1807

Backup
Stereo angles of the

wire array causes
displacement of circle
between even and odd
layers.
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Track Centre Layout

m Dark outer dots
are wires, i.e.
points in (x, y).

m Lighter central
dots track
centers, i.e.
points in (a, b).

m Location of track
centers is dictate
by geometry,
spacial resolution
taken to match
wire spacing.
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Defining the Hough Transform
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Define likelihood that a track centred at position r; contains a
hit wire j at position r; as Tj;.
m T is the Hough Transform matrix of shape [Niracks, NMwires)

m W is the hit wire vector of length [Myires), i.e. W; =1 for
a hit and W; = 0 for no hit.

m C is the track center vector of length [Niracks], where C; is
the likelihood that a signal track exists at track centre /.

Forward Transform Inverse Transform
Hit property Track property
=~ 1
Ty W= G (Ty) " G =W,
~~ ~—— ~—

Hough Track centers Inv. Hough Wire Hits
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Optimizing the Hough Transform [1]
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How do we define T;;? Recover the distribution of the radii of

signal tracks directly from simulation. Each track has an

associated particle, with transverse momentum pr.

Normalised Distribution of Signal Tracks

0.25

Distribution of Signal Track Radius in All Events

0.20

0.10

0.05

0.00

Average the pr from each hit in an
event, then recover the signal radius

for the event.

1 Sig.Hits P
i
rsig. = 7
'8 NSig. Z eB
i

5 10 15 20 25 30
Event-wise Signal Radius [cm]
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Optimizing the Hough Transform [2]

Imperial College

Fit this distribution directly to recover values for Tj;. For
distance djj = |r; — rj| between track centre j and wire i

2
dij_rsig
exp <[ 57 ) D Fmin < dij < Fsig
sig
T(dj)=Tj; x djj—rei
( U) v 1- o lsig < djj < max
Fmax—rsig+0.1 g Iy

0 . else

This is half a Gaussian centred around the signal radius for
smaller radii and a linear drop off for larger radii.

The parameters are the signal radius, rgg, the spread for lower
values, o5z, and the minimal and maximal radii considered,
Fmin and Fmax.
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Optimizing the Hough Transform [3]
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Imperial College

Curve Fmin Isig Imax Osig
Fitted Function 24 cm 33.6 cm | 35 cm 3 cm
Optimal Function | 31.5 cm | 34 cm 345 cm | 2cm

Normalised Distribution of Signal Tracks

<
o
n

Distribution of Signal Track Radius in All Events

=== Fitted Function
= QOptimal Function

b
o
o

e
o
wn

e
=
o

0.05

o
o
o

15

Event-wise Signal Radius [cm]
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ROC Curve: Previous Result

Zoomed ROC curves for previous sample

Signal Hit Retention Efficiency
94 96%

Yandex
. Data Factory

Imperial College
London

100%

90% 92%
100% +

I
%
95% J o

90% -

L

80%

Local Features
—— Neighbour and Local Features I
—— Track, Local and Neighbour Features
—— Energy Deposition

Background Hit Rejection Efficiency

70% 1

65%
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Feature Evaluation :

Yandex
Data Factory

Imperial College
London

The feature importance evaluates how often a feature was used

to split a node.

Feature Importance

Feature Correlation Matrix

Charge
Left Charge
Right Charge
Timing
Left Timing
Right Timing
R Distance
Hough, W/

2 2 ) O O 2 \

S & \

SR e

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% & & &
Normalized Relative Usage \F ® AP <
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