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Reminder: A Signal in DIO Backgrounds
DIOs after a proton bunch injected with a 105 MeV signal.
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105 MeV track DIOs

IV. Results 
• In Height sum at same tick, 3x3 
clustering with faster sampling shows the 
best signal to DIO separation 

• Waveform differential (V[i]-V[i-2]) shows 
good signal to DIO separation therefore is 
also introduced into the trigger algorithm 

•Two settings show <300*kHz 
trigger rate in DIO events while 
keeping more than 80**% of 
trigger efficiency for signal 

* 300kHz is just an arbitrary chosen number 
** Of course this should be as large as possible

III. Trigger Simulation 
• Stop µ- events are generated by assuming: 

• 8GeV/54kW proton beam, bunch 
separation 1.17µs 

• 2.8x10-3 (stop µ-)/POT based on the 
current simulation design 

• Detector and electronics responses are 
from the measurements 

• Finite sampling speed and ADC resolution 
are introduced 

Then… 
• Pileup is found to be more sever than the 

high energy tail of single DIO 
• Shaping time of Preamplifier is shorten by 

factor 4 in simulation 
• Trigger simulation was done for pure signal 

events & DIO by changing several 
parameters 
• Sampling speed (40-120MSPS), ADC 

resolution (8 or 12 bit), gain (1 or 2)

I. COMET Experiment 
Physics Motivations 
• Investigate the new physics Beyond the SM (BSM) by searching for the 

μ-e conversion with the Single Event Sensitivity of 3×10-15 and ~10-17 
in Phase-I [1] and Phase-II [2] 

• BR(μN→eN) is negligible in SM (O(10-50)) 
➡Many BSMs predict sizeable BR(μN→eN), O(10-15) 

• μ-e conversion = clear evidence of new physics  
Signal and Backgrounds 
• Signal: 105MeV single electron 
• Intrinsic BG: Decay In Orbit(DIO), broad spectrum <105MeV/c 

➡σp<200keV/c is required 
• Beam origin BG: μ/π decays in-flight, etc. 

➡Bunched beam + Off-time measurement 
➡Long μ/π transportation 

COMET Experiment 
• Experiment will be done@J-PARC 

• Phase-I using 90° of muon transport solenoid 
• Using the world most intense μ beam 108-9 Hz 

➡Extremely high hit rate both in Phase-I and Phase-II
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V. Summary and Prospects 
Summary 
• The COMET Experiment aims to search for the μ-e conversion with the single event 

sensitivity of O(10-17) in Phase-II 
• Very high incoming particle rate ~O(MHz) is expected in Phase-II and piled up low energy 

(<50MeV) particles can induce the high trigger rate in ~100MeV signal region 
• First realistic trigger simulation is performed by considering the realistic detector and 

electronics response with finite sampling speed & resolution 
• More than 80% efficiency with <300kHz trigger rate is achievable with existing commercial 

ADC chip,>=8bit & >=100MSPS 
Prospects 
• Prompt beam has not been included and should be done soon 
• COMET Phase-II geometry will be still being optimised and not fixed 

• Potentially cause more background, but that can also become better 
• The design of trigger electronics / algorithm for Phase-II will be started based on this study

Abstract: The COMET experiment aims to search for a muon-to-electron (μ-e) conversion with single event sensitivities of 3x10-15 and 3 × 10-17 in Phase-I and Phase-II, respectively. This process is 
strictly forbidden in the Standard Model (SM) while many physics models beyond the SM predict the detectable μ-e conversion rate. Hence it would be a clear evidence of new physics if the μ-e conversion 
is observed. To achieve our sensitivity goal, more than 1020 of total muons are required and such a high huge number of particles potentially leads to the extremely high hit rate in our detector system. 
Thus, it is essential to highly suppress the trigger rate due to those backgrounds that can also worsen the DAQ efficiency while maintaining the high trigger efficiency for signal electrons. In addition, there 
is a possibility to further improve the Phase-II target sensitivity by optimising the experimental design, that may also increase the rate of incoming particles inside the detector. Therefore the design of the 
trigger and readout electronics is crucial for the COMET Phase-II experiment to achieve the best physics sensitivity. In this study, the first realistic trigger simulation has been implemented for Phase-II 
and the preliminary results are presented. 
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Muon Stopping Target

8GeV Proton Beam

• Aiming O(10-17) sensitivity, x10,000 better than 
the current upper limit 

• C-shape transport solenoid to suppress beam BG 
• Curved Electron spectrometer to suppress 

DIO+beam BG
Detector Solenoid ~1T

Electron Spectrometer ~1T

Production Target + Pion Capture Solenoid ~5T

Muon Transport Solenoid ~3T
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tPB = time of Proton Bunch

Phase-ICOMET Phase-II

• Use 1st half of 90° bending magnet 
• Search for μ-e conversion with a sensitivity of 

3x10-15 using Cylindrical Detector (CyDet) 
• Measure the muon beam directly at the end of 

transport solenoid with Straw Tube + ECAL 
(StrECAL)
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e-

StrawTube Tracker

ECAL

NaI(Tl) GSO LYSO
Density, g/cm3 3.67 6.71 7.1
Att. length, cm 2.6 1.38 1.12

Decay const., ns 230 30-60 41
Max emission, nm 415 430 420

Relative LY 100 20 70-80

Comparisons of scintillator characteristics

20mm

20mm
120mm

• Consists of ~2,000 LYSO crystals 
• Timing and energy measurement 
• Primary trigger generation

e- beam
@ Tohoku

ECAL 8x8 Prototype 
+ Preamp Prototype

• Detector performance was measured in the 
beam test with various energy electrons incl. 
100MeV → See Kou OISHIʼs poster 

• Trigger line (2x2 crystalʼs signals are summed) 
waveforms were also measured by using the 
prototype trigger electronics 

• Realistic detector/electronics response was 
obtained!
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Simulated DIO events corresponding to 1bunch in Phase-II 
105 MeV signal electron is overlaid

- Signal only 
- DIO

- Signal only 
- DIO

- Signal only 
- DIO

- Signal only 
- DIO
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Example of 2x2 crystal summed  
waveform 
w/ realistic DIO simulation

Example of 2x2 crystal summed  
waveform w/ realistic DIO simulation 
+ 4time shorter shaping
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