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U — e conversion



uto e conversion

In the SM uN — eN is supressed by
ﬂm_e 0(107°*%) because of the mass disparity

between the W and neutrino.

-wW
éy This is ‘accidental’; new physics scenarios
! N typically give CLFV much higher than SM.
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A giant leap...

For the full COMET experiment

sensitivity improvement over > 12 Project X / PRISM
. () Rate~ ‘_‘ uN — eN concept<£0_ .
SINDRUM-II is 4 orders of = N2 -
maghnitude. < o
10° T ~7 COMET/Mu2e
o (uN—> eN on Al) < 10°16
MC of background processes B

[especially ‘tailsT may not be good |-~
enough for optimal design

COMET Phase-I
(uN - eN on Al) <10-14
— —

. . =
. Intermediate-scale experiment /4
can measure background 108 JTMEG Upgrade: Six 7“‘ i
sources and inform design. meG 2011:_ & SINDRUM Il Excluded
. .. . Bu,—eﬁ 5-4*10' (uN —> eN on Au)
« Can still do competitive physics <7.0x103

with a smaller apparatus

[

Include in COMET programme: 102 10 10* 10?

COMET Phase-I : K -
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Muon decays

Muons allowed stop in suitable target.
« Initially Aluminium, but other materials (Ti) under study.

« Conversion from 1s orbital: uN — eN gives a
mono-energetic electron at 105MeV (=~ m, — B, — ER) @

‘Normal’ decays are backgrounds L
« Nuclear muon capture:

uN(Z) - vN(Z — 1)
« Decay in Orbit [DIO]:

UN — evVvN

ot
o
=9

LAl — evwAl

M,/2

ot
o
@

DIO Rate (Arbitrary Units)
=
o
o

For a free muon, cuts off at 0.01
~m,, but bound state has a
100

small tail up to m,, — B}, — Eg 0 50
o Electron Energy (MeV)
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Backgrounds

Three main background processes: Results from SINDRUM-IT
. . -13
- Decay in orbit, as before | (BR <7x 107" @90%CL)
» Momentum resolution! _:ﬁ'“*_‘-mﬂ_t_ Y.+, € measurement |
10 3' :I;‘:'—L f;‘m'i[; e* measurement
: - : | . = imulation
. Decay in ﬂ|ght 192? H“‘L - MIO simulation

Electrons from energetic Moo, |
muons (p>77MeV ) can be 4, _ - L 1. *MuonDIO
boosted to 105MeV. | S

— Use momentum selection
In muon transport

160 |
e momentum /MeV c™’
« Beam backgrounds:
Significant number of prompt e™ and n~ produced by beam. Can
eliminate this with timing (f we have reliably beam-free time
windows » Pulsed beam
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COMET, Phase I and 11

Phase I Phase Il
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Primary beamline

Main driver of sensitivity: Need lots of low energy muons!
Use high-power pulsed proton beam Ilne (8 GeV) with resonant

slow extraction.
Empty buckets could

Autitrary unils

contain protons and |

create background
Strict extinction

.'H'-I Proton pulses H
' :| Prompt background |
Stopped muon decays

B Ofi-bunch BG

requirement < 107° &

RCS 4/9 buckets
= filled

/
~
\-}_—

.’1/ Main Ring~\ e I S S .

/

T 3 ¥ i iz i
Aproximala time /us

Original requirement

H

¥

= 1w extraction timing : P4

g : I Updated for Phase-I TDR
: :

= L ]
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Beam monitoring

Plan to use diamond detector(s) for beam
monitoring.

« Mainly for extinction monitor, but
could have position monitor as well.

- Prototype tested (11/24~)

beside MR abort line. L=
y—

1 |K2injection

-~ 00
N T o
wn

;
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Muon source

. TS1cold M
« Collect backward-going (751 cols + She (CSaMScoly'+ v

[ . CRE e —" " Va‘“‘"/“ vessel CS thermal shield
pions with capture .

solenoid
« Maximise field at target to B
give larger aperture angle 1t

| Tste | TSI | TSI
TSI TSid  TSb

...........................................................

« Pions decay to muons en-route to stopping target.

« Many neutrons produced, requires careful shielding. The curved
transport line helps to eliminate direct line-of sight.
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Production target developments

TS1 cold Mass CS cold Mass

(TS1 coils + Shell) (CS&MS coils + Shell)
TS1 thdngal shield A Vacuum vessel / CS thermal shield
N A e——— .
9 ¥ ) "3_»‘* . | = = ) : —— .‘-:-_'.1 : ‘

1516/ 151c | TS1a
1511,/ 1S1d  TSib

A Stress calculation for TS1 (first
transport solenoid). Coil winding is
almost complete.

» Pion target (graphite: I1G-43) and
Insertion mount constructed
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Muon transport

Muon yield:
Before collimator

.| Atter collimator

| At target

L 11 i 'l '] : | . i - | i | | s i 'l
0 20 40 60 80 100 120 140
Momentum Amplitude (MeV/c)

Muon transport is a curved
solenoid:

Particles are channelled in spiral

paths [solenoid], which naturally
tend up/down [curvature]

depending on p and charge
Dipole keeps desired lower-p
—ive muons on level trajectory

« Gives charge and momentum

selection, which is enhanced by
using a collimator.

Eliminates high-p muons (which
won't stop) & other particles.

Eliminates line-of-sight from
production target
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Muon transport

NMuoan~n transpnort is a curved

e —

20 40 80 80 100 120 140
Momentum Amplitude (MeV/c)




Phase I detector (CyDet)

« Aluminium stopping target at centre.

 Particle flux in central region is still very
high = Cylindrical Detector system:

— All-stereo-wire drift chamber

— Hodoscopes for triggering
and timing
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CyDet construction
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CyDet reconstruction

Typcial Event at 12% Occupancy

v Signal tracks picked out using

Hough transform based discriminator, then
given to Kalman filter for reconstruction.

135°
180

g \
\

/ ‘““ o\
Stereo -

1
10 ‘
projections

£ |
I :’ Irl
i . u \ Il"a
. \ /
7 225°
A Most background hits are rejected
based on timing, charge, & local features
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CyDet Cosmic ray tests

CR test setup at KEK:

e Instrument detector with Esoo-
development DAQ “’"’"600._
« Trigger with external :
hodoscope counters at 4001
top and bottom. 200k

-800 -600 -400 200 0 200 400 600 800
X [mm]
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COMET Phase II

Upgrade the experiment for 100 x better sensitivity

is possib! ,
of lower backgrounds
Imperial College
London




[ ] [ [ ] [ ] ﬂ
Phase II beamline optimisation OMET
e
@ l§ In parallel with Phase I construction,
i [ows & Phase II design is being optimised using
: Poe g integrated COMET simulation. Examples:
y "2 ® @ Correcting dipole field strength

. o 3 @ Collimator positions

0.001

© Target position & shape

- el -

Muons Stopping
in the Target

Imperial College
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Phase II detectors

5x4 planes (in base-
line design) of straw
tubes for tracking.

Low mass straw design to
reduce scattering.

ECal at end uses ~2000 LYSO crystals for
energy measurement and triggering.

Prototype version detector in development for Phase I, can be
installed in place of CyDet.

« Test design (e.g. new straw weld for lower mass) and readout

« Study particle content of secondary beamline to improve MC
prediction (esp. for Phase II analysis)
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ECal & Straw testing

, ECal Crystals
|| (Cansee 2x2
} | bundle wrapped
" in Al-mylar)

£ 300 _\“E. | oy y——— et 105 M :
=] C Lo ; ; i eV (Le.
s ~ 150um achieved iy I R .
5250 Ox 50um achieveg %i 48— = = - signal) region
I = 0,~180keV/c x
2001 48
= e P | S S—— -
150
L e h
C ";.‘ﬁ\m\- o o o R e s S ;
100- _ ! |
- B8] e -
% 05 115 2725 3 35 4 45 5 0 a0 00 iz 10 iee 1
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COMET Phase II g

JFY 2015 2 9 2020 2021 2022 2023

Proton beamline

Phase-1I Muon capture & transport
(3.2 kW) " petectors 7 Comissioning

& data

Beamline extension

Phase II detectors

x 10713 90% U.L.

oal 3 x 10715 S.E.S. (~ 5 mo)
.E.S. (~ 1 year)

nks to high power 56k

Phase-II
(56 kW)

Accumulates stati
beam from J-PARC

w College
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Mu2e: Overview

S-shape and off-centre collimators that can rotate for BG studies
Stopping target is 17 x 0.2mm Al foils

Target & detector in same solenoid
— "Minimum radius” configuration
similar to COMET Phase-1

Electrons spiral from target to and EM calorimeter

No sign selection, can look e™ tracks (B/G, double charge
exchange)

Imperial College
London




“We are getting beneficial occupancy of our building very soon”

Imperial College
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Mu2e Tracker

Tracker made from straw tubes

Minimum radius of 380mm
corresponds to momentum
of ~ 60MeV

‘Complete’ tracks need
momentum > 90 MeV

Eﬂ.ﬂd- )
| Al > evwAl
Eu.nz M,/2
£
<
£0.02 M,
[1+]
[v'd
o
2 0.01f k
0 | ) ) ) . . ) |
0 50 100

Electron Energy (MeV) Imperial College

London




Mu2e Schedule

CD-1 CD-3a CD-2/3b CD-3c

Projected sensitivity:
2.9 x 10717 SEES. (~ 3 year)

: : ; : : Operatid:ns
[ cemomatemie ]
——> :

; ; ; : : ! ! Commissioning

: Produced:EApriI 2016 :
FY14 FY15 FY1l6 FY17 FY18 FY19 FY20 FY21 /
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DeeMe concept

If pion momentum is small, 7~ - u~v decaysand

muon capture can happen-in-one target
— . Large sample of muon

y decays without needing

to build solenoid channel

Proton ||fe@ *

high-P
Signal

Magngt

econdary Beamline Spectrometer

Imperial College
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Ry
DeMee design & goals [
g 8 o "

« Study DIO tail (see Nagao-san's poster)
u—elyearSES.

° U -— e conversion 1.2 x 10713 [Carbon target]
2.1 x 10~ [SiC target]

* @ 71 ~ Production
‘, . @in-flight m=— u~
o : ® Muonic Atom Formation
Proton ;'_:;G)' .: ] @ Ke Conversion A
[ BN ) ®. .-.. @ —_—
. ® ] : ° e _
M\, ° low-P BG €
- high-P
Production :
Target Signal Magnet

Secondary Beamline Spectrometer

Imperial College
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. . ‘Le
DeeMe in MUSE H-line (Technology) ‘ "

Prompt burst would cause big
problems for normal MWPC

« Develop fast-switched MWPC,
(see Teshima-san's poster)

Wien Filter
(not used for DeeMe)

PACMAN spectrometer | _
magnet from PIENU
experiment @ TRIUMF. o
 B=0.4Tat centre. ;4 = . . Target |
For 105MeV, gives = § ' N it -
a 70° bend.

Prototype of rotating B
SiC target fabricated,
updating design. |

P o b A 2 |
- '

N0
p= Imperial College

| — London




Summary

¥

commg onlir

gh powgr faC|I_|te




Imperial College
London

Reserves

eat emptor: mostly from old talks, not, /
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Charged lepton flavour violation

We already know that lepton flavour is not conserved
Weak mixing mechanism & non-degenerate neutrino masses

* Neutrino (lack of) mass & charge means this is easiest to
observe in neutrino oscillations, but can also lead to CLFV:

/7 N\ \ Y
Ve N\ -~
W~ W |14
Neutrino oscillation u - e tfransition

(without radiation)

« The basic SM amplitudes can be related to the neutrino oscillation

parameters, but requires some radiation to conserve energy &
momentum.

« The u -e system is particularly simple because the radiated ‘mass’
must be neutral, and lighter than a muon.

Imperial College
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Options for decaying muons

The most obvious candidate for the transition 1

to radiate is a photon, and the branching ratio is: ”Ae

2 \ ]
['(u— ey) m? .
X U iUei
e * |2, U
l

~ 0(107%%) 74
u — ey (see note)

14

For a free muon, y or ee are the only options...

...but in @ muonic atom the radiation can be virtual v
The nucleus absorbs it, and recoils slightly. 1 ( \ e
| N
« Because of the relatively large nuclear mass, v
the electron is effectively mono-energetic. _ 2
« Because the process does not require a 1-e conversion

‘real’ photon, other diagrams are possible...

Note: The y can connect
anywhere, not just in the loop

Imperial College
London




New physics

Similar processes exist in a wide variety of new physics scenarios.

« Muon decay is at low energy, so reduce to effective operators:

X
AR
p—f el
\\’
/
X Y
u—-ey
Y
/’~\
|/ — e

YI
bl
q(A) O q(4)

|1 - e conversion

u

\

o,

Dipole coupling

- Lg i F#Y
A,uae

Four-fermion

A2 ﬂ)’ue qvuq

Imperial College
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UN — eN and u — ey

1 1 _ K _ B
we™ 17 o 1 Mukowe - F A e 'C”’”q]

« New physics = CLFV in rare muon decays.

« Energy scale A affects the S T oo
E F G comept s 1072
rate of all such processes. = |Rate~ || wnen concensioR_
« Parameter k depends on the = P
. 10 4+ P COMET / Mu2e =
nature of the new physics 277 N eNonAlcio

COMET Phase-|

S
Both u —» ey and u - e conversion < ==
=

are sensitive to dipole terms, but
U1 - e conv. is also sensitive to
4-femion terms. Bl 74 x 10

« More sensitive to some models.

« (If signal seen) the comparison
allows discrimination between models_g i ! 10 10
§ K P

103 1-MEG Upgrade: B(u —.% 1013

SINDRUM Il Excluded
(uN —> eN on Au)
<7.0x1013




Production target

Phase-I baseline (unlikely to change):
60cm x 2cm dia. graphite (IG-43) target.

Higher Z is better for pion production,
but graphite is a ‘safer’ choice:

« 1G-43 is used for T2K target
(FX, >200kW beam) so is known to
be capable of handling our beam.

« Lower irradiation of target and shield
makes removal and storage safer in case
of replacement in Phase-II

« At Phase-I power, radiative cooling is
sufficient for this target.

Imperial College
London




Capture Solenoid

Comet needs low energy pions s e
so collect from back and sides g P [

of target.

Py

L.

I

Gradient field converts
transverse momentum into
longitudinal momentum.

« Effectively increases the
solid angle aperture into the
transport solenoid.

Imperial College
London




Primary beamline

Main driver of sensitivity: Need lots of low energy muons!’_f.%
Use high-power pulsed proton beam line

° P4 \
(8 GeV) with resonant slow extraction RCS ([ Main Ring
——— 4/9 buckets
% b [ Prompt background I = fi"ed
Stopped muon decays | | |
B Cti-bunch BG _‘
LN e - J'i.
o e ’ ' gnmmﬂw R '|-|-15
Requirement
5 Strict extinction
% 10712 | extraction timing : P4 I’eCIUII’ement
E ‘ ¢ I Of < 10_9.
101 = ! | | r f T | 2
| ! 4 | Beam will be monitored
with diamond detector
Tue e w0 LZinF';F‘;D’;gnf“W Imperial College

London



Cooling and shielding

A 5T solenoid is (unsurprisingly?) superconducting.
« And therefore cryogenically cooled...

But there is a high power beam hitting a target in the middle!
« Phase [ this heating is estimated up to 30W

« Phase II: heating can be 120W [c.f. other sources ~15W]

Shielding is needed, for radiation and thermal heating.

100

« Copper and tungsten shield Coils— oo =
« Cooled with water - El
« Will probably need upgrade for ﬂ

Phase II, gets very (radioactively) hot. ol | ;

600 800 1.00x103  1.20x103
S ]
2 24 6 8 210 12 14 o -

Non-trivial engineering challenge! Energy Deposit (GeVigiproton)
ii:)ll;él(;ﬂnl \_UIICBC




Transport Solenoid

4 Corrective dipoles™=

l

l

!g v Completed 90° muon
“transport arc (including

' octagonal return yoke)

Imperial College
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Extinction test

Ay unhits

| Proton pulses

[] Prompt background
Stopped muon decays | | |

OHf-bunch BG

| Extinction @ J-PARC MR Abort |

Measured Extinction

.........................................................

10-12:_ TT t
10—13 1 1 1 | 1 L | 1 ] | L 1 | L I | 1 1 L | 1
140 160 180 200 220 240 260

RF voltage (kV)

Comet requires extinction:

. NEmpty

E <107°

Nriiea

Important test in May 2014
Excellent results!

Imperial College

London



Phase-I Detector

Phase-I will have a dedicated
detector for u — e conversion
measurements.

tracks in the centre channel, a |
co-axial cylinder geometry is

'I"""I""Il‘l""lj"‘ljfT

Reference
design

(close to latest)

- CyDet

—Alternatives

The detector and capture
target will sit within a 1T
solenoid field.

Low momentum particles
do not reach the detector

|
| W T W W . e S ) S W W W W NN AW =R Y




CyDet

UP RGO NAUGHINGIGD )

The main part of the detector
IS a coaxial

« Helium-based gas mixture
to reduce multiple scattering.
— Resolution ~ 200 keV

e z measurement by stereo layers

« Large inner radius to reduce DIO hit rate

— Dim; 150cm x 84cm(outer)// SOcm(inner)
"‘_\w
« 19 concentric sense layers XN
« Triggering from hodoscopes at ends T Cotege

x—Auis [em]



Proton‘tracks
[~7 in 500ns]

A Event display showing
event projection

« Stringing wires and CR test of
prototype section

Imperial College
London




@\\ _; , COMET transport coils use compensating
@Z@\‘ Production dipole so selected tracks stay level.

Target .
« COMET uses a second curved solenoid as an
electron spectrometer. This filters out ‘low’
momentum and +ive backgrounds

« Final detector is tracker / EM calorimeter
Stopping (like Mu2e) but full
Target Flectrons— plane — thanks to
spectrometer.

e —

“ "‘muumiﬂ”ﬂiﬂ’ﬂ’ﬂﬂﬂﬂﬂﬂﬂﬂﬂ I

———

Imperial College
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...and Phase I

Phase I has 2 goals:
« Investigate backgrounds for phase Il

« Perform search at 100x sensitivity of
SINDRUM-II

For Phase I measurement use a cylindrical
drift chamber around the stopping target. B LLEL

l
« Triggering by auxillary hodoscopes Muon fracks
Also include prototypes/partial elements LLLLLL
of Phase II detectors for development and
characterising backgrounds at low current

Imperial College
London
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Phase II beamline optimisation

Torus 2 Scale Factor (x0.055T)

» Distribution of
stopped muons

Stopping Rate per POT

Muons Stopping

g — in the Target

-_.ﬁ-......-..’.....-é-.'......'........ —

20000 25000 30000

il e

[ = -_—

=1 || EEEEEEEEN e «SSNEEEEENEEEEEE Se— High MomentUm Muons .
-pgEu|[ "SESESEEEEESENE=| “sEEEEEEEE .ev;._, CoT

5000 10000 15000 51
Distance Along Beamline {mrm)

o - - -

3500
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June 2014 ,! <4 COMET hall construction

- completed!

g | A Magnets laid-out for

new beam switchyard
mperial College

| mER
London




Really beam-free windows?

Synchrotrons have stable acceleration buckets

Even if you don't inject protons into
them, stray protons can remain
in stable acceleration.

Main Ring

4/9 buckets

The signal process is rare, filled
so requirements on the extinction
between pulses is very strict
é % % E:z:;tp:;zi;mund %
‘ /Z =parad

0 7

//% Int diate bucket BG |

/ %% / wou/lé/l end up herel / %%

1 S M’oninzi/ﬁm;u? :_mpzrial College

-0.2



Beam extinction

8 N || Proton pulses p

|:| Prompt background [ \
Stopped muon decays

2
7 |
’ [ \ B Off-bunch BG / !
| i

l

Arbitrary unilg

Intermedliate bucket BG
would end up here!

; |
I.j] 1 L Fi 1 L 1 ;_/T\\\L‘_; l I L M

02 0 0.2 0.4 0.6 0.8 1 14
Aproximate time /us

J-PARC MR has 9 stable acceleration buckets

« Need to maintain RF during extraction,
so that bunch structure remains.

« If RF is not strong enough, @ .', Main Ring .
"y ;. 4/9 buckets
protons will ‘leak’ into empty filled
buckets. i
Signal process is rare so even *currently prefer \\\ &
a small leak is a major background 3/9 buckets ST perial College

London



Extinction measurement

COMET design requires that we can achieve

an extinction: Ng, o
mpty

E = <107°

Nritieq

Extinction can be improved by increasing RF

voltage, but this heats the cavities.
(And there is a limit...)

Accelerate MaintainRF

PR 2 N :
\ ‘; 2012 test at 30 GeV
2 7| / \ 1 demonstrated this is possible
6 fff \ -
/ \o Now also (comfortably)
/ \ ] demonstrated at 8 GeV
f P“ v ]
v, - | (End of flat-top) *\ 7

Imperial College
London




Background budget (Phase-I)

Type Background Estimated events
Physics Muon decay in orbit 0.01
Radiative muon capture 0.0019
Neutron emission after muon capture < 0.001
Charged particle emission after muon capture < 0.001
Prompt Beam * Beam electrons
* Muon decay in flight
* Pion decay in flight
* Other beam particles
All (*) Combined < 0.0038
Radiative pion capture 0.0028
Neutrons ~ 107°
Delayed Beam Beam electrons ~ 0
Muon decay in flight ~ 0
Pion decay in flight ~ 0
Radiative pion capture ~ 0
Anti-proton induced backgrounds 0.0012
Others Cosmic rays! < 0.01
Total 0.032

1 This estimate is currently limited by computing resources.

Imperial College

London
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Spectrometer dipole tuning
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Muz2e slides kindly provide by
Jim Miller (Boston)

http://mu2e.fnal.gov




~25 mters

« A search for Charged Lepton
Flavor Violation: uN—eN
— Expected sensitivity of  6x10

7@ 90% CL, x10,000 better
than SINDRUM-II

— Probes effective new physics
mass scales up to 10* TeV/c?

— Discovery sensitivity to
broad swath of NP
parameter space

« Experiment scope includes

Proton Beam line
Solenoid systems
Detector elements

(tracker, calorimeter, cosmic veto, DAQ,
beam monitoring)

Experimental hall
Commissioning begins in
2020

Imperial College

London




Mu2e Solenoids @
Fermilab, INFN Genova, Northwestern, ANL €

superconductor being
fabricated

— 65 km (out of 75 km
total) delivered to
FNAL and accepted

e Fabrication of TS coils
has started

— Prototype provided
by INFN Genova

— Exceeded specs.

 Final design and
fabrication for PS & DS
by General Atomics

Imperial College
London




Mu2e Tracker

ANL, Berkeley, CUNY, LBNL, Duke, Fermilab, Houston, Minnesota, Rice

20k Straw tubes oriented transverse to
beam line
— R, =38cm, R,;;=70cm, L =300cm

— Readout and support at large radii,
outside active volume

High efficiency, excellent resolution

— Momentum resolution 120 keV/c core
for 105 MeV electrons

Ty

* 25 mm Au-plated W sense wire .
» Walls: 12 mm Mylar + 3 mm epoxy + 200 A Au + 500°A/Al

* 5 mm diameter straw

Imperial College
London



Mu2e Tracker

- 7 plane

Self-supporting “panel” consists of 96 straws

R380

6 panels assembled to make a “plane” A

2 planes assembled to make a “station” /// | //// ;
Rotation of panels and planes improves o 1114
stereo information |

Final tracker 18-20 stations long 1620 mm

Imperial College

London




Mu2e Calorimeter

Frascati, Pisa, Lecce, Roma, Caltech, Dubna, FNAL, HZDR

« (sl crystal calorimeter :
« ~2k crystals, hexagonal cross section

— Important for particle ID  ~3 cm diameter, 20 cm (10 X,) length
— 5% energy resolution @ 105 MeV - same radii as tracker

— <500 ps timing resolution
« 2 disks oriented transverse to
beam line, 70 cm apart

« Readout : 2 photo-sensors per
crystal

SIC-1

SIC-2

SIC-3

Disk 2 < Test crystals

Imperial College
London




Mu2e Cosmic Veto

Virginia, NIU, ANL, S. Alabama, BNL, JINR Dubna, KSU

« 4 layers of plastic scintillator
— WLS fiber + dual-ended SiPM readout

« Coincidence in 3-of-4 layers gives 99.99%
veto efficiency

— 5 ns coincidence window

— 125 ns veto window
— 4% dead time

cosmicveto prototype
for test beam data taking

TS-hole

300 m? of cosmic veto coverage

Imperial College
London




Mu2e Simulations

LBNL, Fermilab, Irvine, Boston, Virginia, NIU, Caltech, Louisville, Pisa,
Novosibirsk, Frascati, CUNY, Muons Inc., Northwestern, Sun Yat-Sen, Berkeley

Stopping Target Straw Tracker Crystal Calorimeter

|5Ii]§“f‘uil occupancy overlay

signal e-

-1000 '
Pattern recognition algorithm identifies timing peaks to narrow hit window to 100

Utilize a detailed, hit-level GEaNT4 simulation, realistic occupancy overlays, full reconstruction,
pattern recognition, and track fitting. Full systematic error analysis.

Imperial College
London



Mu2e Sensitivity

Estimated backgroundyields for 3.6 x 102° POT .
| mryer o Total background yield:

Category Background process (events) O 36 / O 10 t
. +/- U. events
Intrinsic Muon decay-in-orbit (DIO) 0.199 + 0.092 ( )
Muon capture (RMC) 0.000 0% .
Late Arriving Pion capture (RPC) 00230006 | o TOtQg | S| g na |
Muon decay-in-flight (u-DIF) <0.003 . .
Pion decay-in-flight (x-DIF) 0001 = <0001 acceptance x efficiency:
Beam electrons 0.003 + 0.001
Miscellaneous Antiproton induced 0.047 + 0.024 (8 . 5 + / - 1 .O) %
Cosmic ray induced 0.082 + 0.018

fafdlonek o e ERZREM . Single-event-sensitivity:
Estimated signal sensitivity for 3.6 x 102 POT (2.9 +/- 0.3) x 10/

Parameter Value

Physics run time @ 2 x 10" s/yr. 3 years ) Expected leited:
Protons on target per year 1.2x10% a

. 6 x 107 @90% CL
L.~ stops in stopping target per proton on target 0.0019
- capture probability 0.609 .
Total acceptance x efficiency for the selection criteria of Section 3.5.3 (85 i{,’_l,)% ¢ N eW P h yS | C S re a C h :
Single-event sensitivity with Current Algorithms (2.87£53) x10™" Leff < 1 04 Te V / C 2
Goal 24x 107"
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